Conserved residues modulate copper release in human copper chaperone Atox1.

نویسندگان

  • Faiza Hussain
  • John S Olson
  • Pernilla Wittung-Stafshede
چکیده

It is unclear how the human copper (Cu) chaperone Atox1 delivers Cu to metal-binding domains of Wilson and Menkes disease proteins in the cytoplasm. To begin to address this problem, we have characterized Cu(I) release from wild-type Atox1 and two point mutants (Met(10)Ala and Lys(60)Ala). The dynamics of Cu(I) displacement from holo-Atox1 were measured by using the Cu(I) chelator bicinchonic acid (BCA) as a metal acceptor. BCA removes Cu(I) from Atox1 in a three-step process involving the bimolecular formation of an initial Atox1-Cu-BCA complex followed by dissociation of Atox1 and the binding of a second BCA to generate apo-Atox1 and Cu-BCA(2). Both mutants lose Cu(I) more readily than wild-type Atox1 because of more rapid and facile displacement of the protein from the Atox1-Cu-BCA intermediate by the second BCA. Remarkably, Cu(I) uptake from solution by BCA is much slower than the transfer from holo-Atox1, presumably because of slow dissociation of DTT-Cu complexes. These results suggest that Cu chaperones play a key role in making Cu(I) rapidly accessible to substrates and that the activated protein-metal-chelator complex may kinetically mimic the ternary chaperone-metal-target complex involved in Cu(I) transfer in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conserved residue modulates copper-binding properties through structural dynamics in human copper chaperone Atox1.

The human copper chaperone Atox1 plays a central role in the transport of copper in cells. It has been reported that the conserved residue Lys60 contributes to the heterocomplex stability of Atox1 with its target protein ATPase, and that the K60A mutation could diminish the copper transfer. In this work, we carried out the structure determination and dynamic analysis of Atox1 with the K60A muta...

متن کامل

The Role of Copper Chaperone Atox1 in Coupling Redox Homeostasis to Intracellular Copper Distribution

Human antioxidant protein 1 (Atox1) is a small cytosolic protein with an essential role in copper homeostasis. Atox1 functions as a copper carrier facilitating copper transfer to the secretory pathway. This process is required for activation of copper dependent enzymes involved in neurotransmitter biosynthesis, iron efflux, neovascularization, wound healing, and regulation of blood pressure. Re...

متن کامل

Copper binding modulates the platination of human copper chaperone Atox1 by antitumor trans-platinum complexes.

The transport system of platinum-based anticancer agents is crucial for drug sensitivity. Increasing evidence indicates that the copper transport system is also involved in the cellular influx and efflux of platinum drugs. The copper chaperone Atox1 has been shown to bind to cisplatin in vitro and in cells. Previous results reveal that copper binding promotes the reaction between Atox1 and cisp...

متن کامل

Role of antioxidant-1 in extracellular superoxide dismutase function and expression.

The extracellular superoxide dismutase (ecSOD or SOD3) is a copper-containing enzyme which is highly expressed in the vasculature. Copper-containing enzymes require copper chaperones for their activity however the chaperone which delivers copper to SOD3 has not previously been defined. Atox1 is a copper chaperone proposed to deliver copper to the trans-Golgi network. Because SOD3 is secreted vi...

متن کامل

Identification of New Potential Interaction Partners for Human Cytoplasmic Copper Chaperone Atox1: Roles in Gene Regulation?

The human copper (Cu) chaperone Atox1 delivers Cu to P1B type ATPases in the Golgi network, for incorporation into essential Cu-dependent enzymes. Atox1 homologs are found in most organisms; it is a 68-residue ferredoxin-fold protein that binds Cu in a conserved surface-exposed Cys-X-X-Cys (CXXC) motif. In addition to its well-documented cytoplasmic chaperone function, in 2008 Atox1 was suggest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 32  شماره 

صفحات  -

تاریخ انتشار 2008